:: 게시판
:: 이전 게시판
|
- 모두가 건전하게 즐길 수 있는 유머글을 올려주세요.
- 유게에서는 정치/종교 관련 등 논란성 글 및 개인 비방은 금지되어 있습니다.
통합규정 1.3 이용안내 인용"Pgr은 '명문화된 삭제규정'이 반드시 필요하지 않은 분을 환영합니다.법 없이도 사는 사람, 남에게 상처를 주지 않으면서 같이 이야기 나눌 수 있는 분이면 좋겠습니다."
20/05/20 19:32
2로 나누어 떨어지기때문에 짝수
1. 소수는 자연수 2. 자연수는 곱셈에 결합, 교환법칙이 성립 3. 모든 소수의곱 =2 × (2를 제외한 모든 소수의 곱) 으로 표현가능 -> 이것 자체가 짝수의 정의에 만족
20/05/20 20:14
아뇨 무한대로 가면서 갑자기 자연수 곱은 자연수다 를 부정하고 있다는 것입니다.
무한하게 커지는 수를 곱한다고 자연수를 초월하는 다른 존재가 되는게 아닌데요.. 뭐 이거 가지고 거의 십년전에도 이곳에서 크게 싸우고 잠시 접었던 적이 있어서 그만 하겠습니다.
20/05/21 05:04
겨울삼각형님이 공리를 잘못이해하고 계신건데요..
자연수를 무한히 곱하는 수는 자연수가 아니라 그냥 무한대죠.. 그걸 자연수 취급하면 1=2 같은 이상한 결과가 나오죠.
20/05/20 19:45
"아하 Prime Number가 자연수 이상에도 적용될 수 있는 개념이군요! (이상 2까지만 이해한 중수)
1과 자기자신 이외에는 나뉘지 않으니, 그럼 2의 제곱근 같은 무리수도 포함인건가요...?" 라고 말하려다가 댓글 3을 보고 깨달았습니다. 감사합니다! 저 그냥 중수할래여!
20/05/20 20:09
모든 관련글에 댓글을 다 다시는건가요.. 아래 링크 보니 많은 분들께서 설명을 하셨는데도 결국 받아들이지 못하셨네요.
개인적으로 재밌게 읽었던 '무한의 신비'라는 책을 추천드립니다.
20/05/20 20:18
무한대를 이해하지 못하는것은 결코 무식한게 아닙니다. 오히려 이해되는게 이상한거죠. 저도 심적으로는 겨울삼각형님의 생각과 비슷합니다. 그냥 머리로 억지로 받아들이는거죠.
다만 일생을 바쳐 무한대를 연구해온 과거 전설적인 수학자들의 성과와, 지금 오랜 시간 수학을 공부하고 있는 수학 전공자 회원분들의 말씀을 계속해서 무시하시는건 그다지 바람직한 태도가 아닐 뿐이지요. 즐와하세요. 저도 오랜만에 와우 하고 싶어지네요. 참고로 위에 쓴 책 추천은 비꼬는게 아니라 진심 추천입니다.
20/05/20 20:26
고교과정까지만이면 발산이죠.
발산하는 값은 수가 아니라는게 고수이고 그 발산하는 값을 실수와 일대일 대응 시킬 수 있다는게 초고수의 영역이죠.
20/05/20 20:39
4년후에도 똑같은 얘길 할걸요.
저 스탠스를 바꾼다는건 일종의 세계관 파괴에 해당하는거죠. 본인 정체성이 파괴되는 것. 서브컬쳐 식으로 말하면 “내가 아는 세계가 무너지고 있어!” 급이라 변할리도 없고 변해서도 안됨.
20/05/20 20:35
근데 어떻게 모든 소수의 곱이 4파이제곱이에요? 너무 작지 않아요? 소수는 자연수만 포함되서 곱이 줄어들지도 않을거고, 100 아래 애들만 곱해도 훨씬 넘을텐데.
20/05/20 20:42
무리수도 크다 작다는 비교할 수 있는거 아닌가요? 파이는 3보다 크고 4보다 작은거 아닌가요?
무한급수들도 수렴하는거 있고, 크기 비교 가능하잖아요?
20/05/20 20:46
(비전공자이긴 하지만) 그건 일종의 유머(?)로 보셔도 됩니다. 수학적으로 같다는 뜻이 아니고, 복소해석학에서 일종의 해석적 확장을 해서 원래 수가 아닌걸 수로 가정하고 이래이래 하면 저런게 나온다 뭐 그런 개념입니다. 모든 자연수를 다 더하면 -1/12가 된다는 말도 안되는 이야기도 있는데 https://namu.wiki/w/%EB%9D%BC%EB%A7%88%EB%88%84%EC%9E%94%ED%95%A9 대충 비슷한 개념으로 이해하셔도 괜찮을것 같습니다.
20/05/20 20:41
결과가 그렇다는걸 반박하려는 생각은 없고.. 그렇다면 그런거겠죠
그냥 좀 회의적인건.. 이런 식의 문제풀이를 거칠게 해설해주는 걸 듣고 있으면 학창시절에 배운 수학적 증명에서 귀류법 쓰는 거는 대학수학에서는 다 반박가능한 소리아닐까 하는 생각은 들어요. 'A하면 B라는 명제가 나오는데 B는 있을 수 없으니 A는 틀렸다' 는 식의 명제가 나오면 '아니 왜 B가 있을 수 없음? B도 되는데?' 하면 고등수학 떄 배우는 건 걍 의미없는 짓 아닌가..
20/05/20 20:51
귀류법으로 증명한건 반박할수 없긴 할겁니다 뭐 귀류법을 싫어해서 귀류법으로 증명된 것들을 다른 방법으로 대체하는 학파도 있긴한데 크게 의미가 있는지는 모르겠네요
개인적으로는 숙제 풀다보면 제일 많이 써먹는게 귀류법이긴 했네요
20/05/20 20:42
어.. 근데 4파이제곱이면 대강 40 언저리의 숫자 아닌가요? 짝수가 아니다 까지는 어떻게 납득하겠는데 어떻게 모든 소수의 곱이 이렇게 작은 수일수 있는지 직관적으로 잘 이해가 안 됩니다.
20/05/20 20:45
놀랍네요.. 저는 중수 수준이었습니다. 저런 게 물리학적으로 어떻게 활용되나요? 대학원 생활까지 했는데 이해가 거의 안 되는 수준이네요 크크크.
20/05/20 21:02
그래서 리만가설과 양자역학사이에서 같은 공식이 나왔을 때 아주 놀랄 일이었죠. 저 같은 어설프게 아는 사람들이 온갖 상상의 나래를 펼치기도 했구요.
20/05/20 21:53
저게 일종의 재규격화를 이용해서 답을 낸거라고 하던데...
재규격화는 물리학에선 뭐 필수 아니겠습... 표준 모형에서 중력이 못들어가는 이유는 재규격화가 안먹혀서 발산해버린다는...
20/05/20 20:57
저도 일반인이지만 수학을 공부하고는 있는데 암기를 아예 안 하고 정리 위주로 하고 공부할 때 다시 빠르게 읽고 상기시키는 방식으로 하다 보니 소수가 뭔지 생각이 안 났네요 크크
20/05/20 21:01
고등학교 수학 수준에서 좀 더 쉬운 예를 들면
1 + 2 + 4 + 8 + 16 + 32 + … = ∞ 인데 1 + 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + … = 2 죠. 이건 -1 < x < 1에선 1 + x + x^2 + x^3 + x^4 + x^5 + … = 1/(1-x)로 수렴하고, 그 외의 범위에선 무한대로 발산한다는 겁니다. 그런데 모든 실수에서 1 + x + x^2 + x^3 + x^4 + x^5 + … 1/(1-x)로 보겠다면, 1 + 2 + 4 + 8 + 16 + 32 + … = 1/(1 - 2) = -1입니다. 그래서, 어떤 물리학 이론에서 1 + 2 + 4 + 8 + 16 + 32 + … 이런 식이 나왔다면 이걸 -1로 취급하겠다고 하는 꼴이죠. 2의 거듭제곱들을 더했는데 숫자가 엄청 작으니 위화감이 느껴지는데, 이건 2의 거듭제곱의 합이 1/2의 거듭제곱의 합과 같이 거동한다고 여긴 결과입니다.
20/05/20 21:24
모든실수에서합을 1/1-x 로 본다는거 자체가 잘못된가정아닌가요?? 그걸 그렇게 본다는게 무슨 의미가있는지..
틀린가정으로 해놓고 결과는 맞다고 주장하는게 좀 이상하네요
20/05/20 21:45
잘못된 가정이라기 보단 발상의 전환입니다.
수학의 발전 자체가 천재들의 발상의 전환으로 이루어졌다고 생각하시면 되요. 일반인들은 당연히 이해 못 할 수 밖에 없습니다.
20/05/20 21:21
무려 저 논문은 저 사실을 이용해서 소수의 개수가 무한하다를 증명하네요.
해당 논문의 Corollary 9을 보시면 소수가 유한하다고 가정하면 2 × 3 × 5 × 7 > 4π2 이기 때문에 모순. 따라서 소수의 개수는 무한하다. 라는 결론이 나오네요
20/05/20 21:23
사실 억지이기도 하고, 수학적 정의 확장은 그게 해석학적으로 유용할때 의미있는데, 실질적으로 써먹을 데가 없는데까지 가정을 해서 계산하니 저런 자연과 동떨어진 해괴한 결과가 나오는 거라고 생각합니다.
엄밀히 얘기하면 무한대부터는 수가 아니지요.. 그러니 수가 아닌걸로 수처럼 더하고 빼서 나오는 결과도 믿을수 없고요. 굳이 정의하자면 모든 수수의 곱은 짝수로 하는게 더 유용하다고 생각합니다
20/05/20 21:46
수학 전공도 아니고 해당 논문 읽을 생각도 없지만, 결과만 보고 판단하자면, '해보니 이런 해괴한 결과가 나오고 그 결과물은 실질적으로 써먹을 데가 없으니 너희들은 이런 비슷한거 하지 마요' 정도로만 써먹을수 있을것 같습니다. 굳이 비유하자면 한시간 동안 땅만 파도 의미를 찾고자하면 찾을수 있겠지요.
20/05/20 21:55
결과만 보시니 잘못된 판단을 하실 수 밖에요. 저 결과를 도출해 나가는 과정에서 쓰인 수학 이론들이 실제로 여러 분야에 쓰이고 있는 겁니다.
저 결과는 그 이론을 하다보니 나온 부차적인 결과고요.
20/05/20 21:39
저런식의 재규격화 하는 방법을 못썼다면 당장...물리학자들 다 자살했을겁니다...
양자역학쪽같은데서는 재규격화없이 뭐 좀 계산할려면 다 무한대로 모조리 발산해버린단 말이죠... 재규격화해도 중력만 끼어들면 여전히 답은 안나오지만요...
20/05/20 22:17
엄밀히 얘기하면 무한대도 수 입니다.
수학을 어느정도 아시는것 같아서 수학을 사용해서 설명하겠습니다. 복소해석에서 등장하는 Riemann Sphere에서는 R^2 Plane 에 infinite point 를 붙여서 (one-point compactification) 구를 만들기도 하고 ( 이떄는 1/무한대 = 0 , 1/0 = 무한대 로 가정합니다). 해석학은 아니지만 집합론에서는 수많은 무한대들인 cardinal number, ordinal number가 나오지요. 그리고 그다지 해괴한 결과도 아닙니다. 그저 우리가 흔히 아는 수체계가 아니라서 혼란스러운 결과처럼 보일 뿐이지요. 예를 들어서 라마누잔 합의 대표적인 예인 1+2+4+8+... = -1 (R) 의 경우도 수를 실수가 아닌 일종의 p-adic number 로 보아서 p-adic norm 을 준다면 p-adic norm 에서는 |2^n| = 2^-n 이기 때문에 lim |2^n| = 0 이기 때문에 완전히 수학적으로 의미있는 결과가 됩니다. 물론 모든 라마누잔 합이 이런식으로 설명되지는 않습니다. 그리고 해석적으로 유용할 때만 수의 확장을 쓴다는것은 위험한 발언입니다. 애초에 해석학은 수학의 일부이기 때문에 해석학만 발전한다면 복소수, 실수집합을 넘어서는 체계는 의미가 없게 되겠죠. (물론 해석학도 범위가 매우 넓어서 각종 해괴한 해석학도 존재합니다.) 사실 저런 수체계의 확장은 해석학보다는 대수학이나 기하학등에서 훨씬 많이 쓰입니다.
20/05/21 09:17
저분이 해석학적 확장을 수학에서의 해석학을 의도하고 쓴건 아닌거 같아요 문맥상 일반적인 의미에서의 해석학적 확장을 의도한거 같네요 그건 그렇고 p-adic norm으로 저걸 이해할 수 있다니 발상이 신기하네요 그런 norm이 있다는 것만 알았는데 역시 수학의 세계는 넓네요
20/05/20 22:25
저는 저런 라마누잔 합들 자체가 수학에서는 그다지 의미있는 결과가 아니고 어느정도는 예전에 끝난 쉬운 수학(학부 해석학 수준)이어서 대단한 업적보다는 그저 유희거리정도라고 생각합니다만(어디까지나 수학계 내에서 입니다), 그렇다고 저거를 그렇게 폄하할 필요는 없다고 봅니다. 저것들은 다른 대단한 수학이론을 발전하다가 나온 보너스로 딸려온 부산물정도이기 때문입니다. 또한 다른 동네인 양자역학에서는 재규격화를 이용할때 필요 한것 같네요(그래서 수학 저널이 아닌 수리물리학 저널에 올라온것이지 않을까요).
20/05/20 21:35
생각보다 그렇게 까지 초고수는 아니어도 이해 가능합니다.
그리고 제목 보자마자 저 분 출몰할꺼라 예상했습니다. 크크크킄크크
20/05/20 21:43
흠, 저랑 관계없는 분야의 이야기라 어렵네요. 저는 중수.
제 짧은 생각으로는 '무한대' 라는 게 수냐 아니냐가 관건일 것 같은데, 일단 '무한대는 수가 아니다' 라는 것 같습니다. 그런데, 이 '무한대는 수가 아니다' 라는 것이 수학적으로 증명이 된 건가요? 아니면 일종의 정의, 혹은 약속 같은 건가요?
20/05/20 21:46
무한대의 정의는 무한집합의 원소의 갯수였나 할텐데요...
아마 초실수에선 수였을려나요... 즉 우리가 흔히 말하는 실수체계에선 수는 아니였을...
20/05/20 21:49
이런글은 몇년전 논란때도 느꼈지만, 더 넓은 세계관으로 인해 혼란스러운게 당연한 것 같아요.
우리는 지구에서 천하제일무도회 하고있는데, 피콜로가 나타난격.(수학의 세계는 더 무궁무진하다고 생각해서 아직 라데츠급의 세계관도 등장 전이라 생각..)
20/05/20 22:04
제가 좋아하는 유튜브 영상 하나 가져왔습니다.
https://youtu.be/d-o3eB9sfls 전유성이 '아이디어가 딸릴 때는 시집을 읽는다. 와 이걸 이렇게 표현했네? 하고 놀라다 보면 아이디어가 떠오른다'고 했는데 그 기분을 수학 유튜브를 보며 느낄 줄은 몰랐습니다.
20/05/21 00:17
본문과 달리 이 경우는 무한대가 아니라 수렴하는 값을 가지고 계산한 거니 문제가 없지요. 물론 발산하는 것도 유용하게 계산되는 경우도 일부 있지만요.
20/05/21 04:21
사실 중/고수가 정상입니다?
뭐 코딩하시는 분이 이상하게 장판파 열기도 했지만 수학과학 쪽 코딩할거 아니면 딱히 쓸모없는 개념이죠. 프로그램의 길이는 결코 무한할 수 없으니까. 걍 수학적으로 여러 도구를 쓰면 저게 말이 된다라고 받아들이면 편한 것 같습니다. 무한을 1/00으로 이해하는 수준이면 사는데는 지장이 없다고 확신합니다???
20/05/21 05:29
일단 "무한"이라는 말이 붙으면 뭔가 상식에 어긋난 답이 나온다는걸 경험으로 배웠습니다.
비상식적일 정도로 하루종일 명륜진사갈비를 부르짖는다던가
20/05/21 06:18
저도 왜 짝수가 아닌것인가 고뇌에 빠졌는데
좀 더 생각해보니 2*(나머지 소수의 곱) = 무한 = 무한-1 = 2*(나머지 소수의 곱)-1 이라고 생각하니 좀 납득이 될 것 같기도 하고 아닌거 같기도 하고...
20/05/21 10:11
첨에 문제 딱 보고는 중수였다가..댓글들을 열심히 읽으면서 고수의 영역까지는 이해를 했는데.
4파이제곱이라뇨?? 띠용.. 논문을 이해할 능력은 안되지만 모든 소수의 곱이 4파이제곱이 맞다면 확실히 짝수는 아닌거네요.
20/05/21 10:14
근데 파이가 3.141592... 확실히 파이보다 더 큰 4라는 숫자로 치환해도 4파이제곱은 64밖에 안되고 실제 4파이제곱은 더 작은 수일텐데, 어떻게 이 값이 모든 소수의 곱이 될 수 있는거죠???
쉽게 설명가능하신분 계실까요
20/05/21 12:03
완전 같은 식은 아니지만 그래도 어느정도 연관이 있는 라마누잔 합과 리만가설에 관한 영상입니다.
https://youtu.be/sD0NjbwqlYw 한 번 보시죠.
20/05/21 16:11
세계관의 확장이 문제죠. 지능의 문제가 아닙니다. 예를 들어 페르마와 함께 확률의 개념을 만든 파스칼 같은 경우만 봐도 음수를 인정하지 않았습니다. 화씨를 만든 파렌화이트만 해도 그 당시에 실험실에서 구현할 수 있는 가장 낮은 온도를 화씨 0도로 잡았죠. 그들이 무식해서 그랬다고 생각하지는 않으실 껍니다. 그들은 그냥 음수를 받아들이지 못했을 뿐이죠. 무한의 개념 역시 마찬가지입니다. 오히려 제대로 공부해서 대략적으로 이해하고 있는 분들이 더 적을 뿐 음수와 마찬가지 입니다. 받아들이지 못한다고 무식한건 아닙니다. 질럿이 야마토포 한 방에 죽지 않는다는 걸 스타를 모르는 분께 설명하기는 정말 어렵죠. 그냥 그게 뭔데 이 씹덕아! 하고 지나가면 되는겁니다.
20/05/21 19:25
저런 분하고 말해봤자 답이 없어서 그냥 말미에 독백으로 달아놨는데 글 작성자분이 볼 거라는 생각은 못 했네요. 이경규의 유명한 말을 빌려왔을 뿐입니다. 무식에 방점이 박힌 건 아니구요. 그보다 중요한 건 태도죠. 자신보다 그 분야에 전문가가 말해주는데 끝까지 알량한 지식에 빗대어서 반박을 하는데 그거 보고 진짜 그냥 역.. 아오 6년 전 질문글 보니까 수학으로 논문 쓰는 분들이 상대의 수준에 맞춰서 수학적 귀납법으로 무한에 대한 개념을 완벽하게 설명해줬는데 그저 억지부리지 말라고 반박하네요. 왕년에 코딩 했다고 자존심 세울 줄이나 알지 도대체 저런 분들은 지수에 정수가 아닌 음수, 유리수가 들어가는 건 어떻게 받아들인 걸까요. 저도 이제 웬만하면 그러려니 하고 넘어가려고 해서 대댓글 안 단건데 글 작성자 분에게 실례가 많았습니다.
|